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Library design is an important and difficult task. In this paper we describe one possible solution
to designing a CNS-active library. CNS-actives and -inactives were selected from the CMC
and the MDDR databases based on whether they were described as having some kind of CNS
activity in the databases. This classification scheme results in over 15 000 actives and over
50 000 inactives. Each molecule is described by 7 1D descriptors (molecular weight, number of
donors, number of acceptors, etc.) and 166 2D descriptors (presence/absence of functional groups
such as NH2). A neural network trained using Bayesian methods can correctly predict about
75% of the actives and 65% of the inactives using the 7 1D descriptors. The performance
improves to a prediction accuracy on the active set of 83% and 79% on the inactives on adding
the 2D descriptors. On a database with 275 compounds where the CNS activity is known (from
the literature) for each compound, we achieve 92% and 71% accuracy on the actives and
inactives, respectively. The models we construct can therefore be used as a “filter” to examine
any set of proposed molecules in a chemical library. As an example of the utility of our method,
we describe the generation of a small library of potentially CNS-active molecules that would
be amenable to combinatorial chemistry. This was done by building and analyzing a large
database of a million compounds constructed from frameworks and side chains frequently found
in drug molecules.

Introduction

Combinatorial chemistry and high-throughput screen-
ing (HTS) have frequently been justified based on the
premise that the probability of finding a hit in a
screening experiment is proportional to the number and
variety of molecules screened. However, synthesizing
and screening a very large number of compounds is
costly. Preparing and testing a random selection of
compounds may not be the most efficient way to extract
the maximum possible information from an experiment.

Researchers are now beginning attempts to enhance
the information content of screening libraries. One
method that has seen much use in this context is to
enhance the diversity of the compounds screened. The
basic rationale behind this is provided by the so-called
similarity principlessimilar compounds often show
similar biological activity.1 If this is true, then it follows
that a screening library covering diverse structural
types will generate leads for a large number of biological
targets. The concept of enhancing the information
content (through diversity and other means) is also
important for lead optimization.

Clearly just diversity is not sufficient for all types of
screening libraries. If the library is meant for broad use,
one may still want to have a diverse set of “drug-like”2,3

molecules. If the library is meant for a specific target
(or set of related targets), one would of course like to
incorporate additional target-specific information. For
example, if the target is a zinc metalloproteinase, then
a diverse set of molecules with zinc binding moeities
would be preferred. If the target is an aspartyl protease,
then a diverse set of molecules without an aspartate

binding hydroxyl group would not be likely to provide
useful leads. Again, if the target protein is found in the
central nervous system (CNS), then we need molecules
that have features which would at least enable them to
cross the blood-brain barrier (BBB).

In this paper we demonstrate a method by which
molecular feature-based information about BBB pen-
etration and CNS target activity can be obtained. We
also demonstrate a computational library design experi-
ment using our results. Our approach is simple. We use
a set of descriptors to learn to distinguish CNS-active
molecules from CNS-inactive molecules. This is facili-
tated by the availability of large databases of known
CNS-active agents. There are over 80 000 compounds
in the CMC4 and MDDR5 databases. Confining our
attention to compounds with molecular weight less than
600 and calculated log P values between -4.0 and 11.0,
we are left with roughly 73 000 compounds. Out of these
roughly 18 000 compounds are listed as having CNS
activity. CNS-active molecules are identified by search-
ing for therapeutic classes such as anticonvulsant,
antidepressants, antipsychotic, etc. (see Methods for a
detailed discussion). We make the assumption that most
molecules in the CMC and MDDR that do not fall into
these classes will show no CNS activity (see below for
a detailed discussion). This work, therefore, attempts
to mimic the characteristics of compounds that were
designed and marketed to actively target the central
nervous system.

CNS Activity. It is believed that CNS activity (and
transcellular permeability in general) is a complex
function of physical/chemical properties of molecules
such as size, lipophilicity, hydrogen-bonding potential,
charge, and conformation.6 For any given molecule, one
of these factors may dominate others.7
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Drugs with the brain as the site of action should, in
general, be able to cross the BBB. Drug delivery to the
brain can be enhanced by increasing the lipophilicity
of the molecule, by using prodrugs that dissociate after
crossing the BBB, or by using passive or active drug
targeting that utilizes transport systems at the BBB in
the normal or disease states.8-10 In general, the transen-
dothelial transport of compounds can depend on binding
to constituents of the plasma, ionization state, time-
dependent plasma concentration, and cerebral flow. It
is possible to modify many of these properties with
changes in chemical structure.

Previous attempts at understanding CNS activity
have resulted in certain rules-of-thumb. For example,
Andrews et al.11 have shown that an aromatic ring-
tertiary nitrogen pharmacophore is important for CNS
activity. Levin12 has successfully correlated octanol-
water partition coefficient and brain capillary perme-
ability for compounds with molecular weight less than
400. However other, more recent attempts conclude that
the octanol-water partition coefficient does not cor-
relate well with blood-brain transport.13,14 Other cri-
teria, like a limit of 8-10 hydrogen bonding groups per
molecule, have also been proposed.10

Methods
Historically CNS activity has been studied using standard

QSAR approaches on a small series of related compounds.13,15-17

Recently Norinder et al.18 built a partial least-squares model
on a diverse set of compounds, but their dataset was also
smallstens of compounds. This procedure is clearly inap-
propriate if the aim is to design diverse combinatorial libraries.
We need to have a large database to generate models. We have
therefore decided to adopt a classification method based on
therapeutic use. Two recent publications19,20 also adopt a
therapeutic use-based classification to differentiate between
CNS-actives and -inactives. The approach adopted in both of
these works, however, is not based on generating regressions.

Compounds in therapeutic classes given in Table 1 were
considered to fall into the CNS-active class. Other compounds
in MDDR and CMC databases were by default CNS-inactive.
It is possible that some of the default CNS-inactive class may
actually have CNS activity, but it is reasonable to assume that
a majority of these compounds are inactive. This selection
procedure results in (after pruning based on molecular weight,
etc., and the availability of ISIS keys) 1 050 compounds from

the CMC and 16 785 compounds from the MDDR that are
classified as CNS-active.

Large databases provide immunity against over-representa-
tion of any single class of compounds. For example, the CNS-
active set contains about 50 (CMC) and 250 (MDDR) 2-ben-
zylpiperidines (used as a pharmacophore for opioids), about
20 (CMC) and 240 (MDDR) 2,3H-1,4-benzodiazepines (used
as a pharmacophore for benzodiazepines). Figure 1 in the
Supporting Information shows some of the most frequently
occurring frameworks21 in the CNS-active MDDR database.
This shows in detail that no nontrivial framework (a benzene
ring is an example of a trivial framework), as defined by Bemis
and Murcko,21 dominates the database.

The “automated” classification scheme based on therapeutic
use adopted in this work, though useful, can lead to problems
in constructing training and test sets. Some compounds will
be incorrectly classified. The CNS-inactive classification, in
particular, is difficult. For example, the classification of CNS-
inactives is confused by noting that crossing the BBB is not
necessarily synonymous with the ability to cause CNS effects.
Therefore we need to adopt a learning method that can handle
noisy classification data. In this data model, called an (a,b)
classification noise model, we have a setting in which true
positive examples are incorrectly labeled (independently) with
probability a and true negative examples are incorrectly
labeled (independently) with probability b. The goal of the
learning algorithm in this setting is to produce a hypothesis
that is ε-close to the target function with respect to nonnoisy
data. Our experience22 with Bayesian neural nets shows that
they are robust under this classification noise model. For
demonstrating that our models perform well under nonnoisy
data conditions within the context of this work we have
performed three tests:

1. Explore the model in detail to check for reasonableness
of the parameter values. We do this in the discriminant
analysis models (BNN0) developed by checking for the sign
and magnitude of the contribution from the parameters of the
7-descriptor set. In this connection it is important to note that
the nonlinear models are built under the same protocol as the
linear ones.

2. Explore the performance of the models on a subset of
CNS-active MDDR compounds. These compounds are selected
based on the information in the database regarding tests on
animals.

3. Explore the performance of the models on a dataset where
compounds are individually labeled. This dataset has 275
compounds (see Table 1 in Supporting Information for a
complete listing). This database was originally constructed by
compounds found in the papers by Waterbeemd et al.19 and
Fischer et al.20 and the compounds used by Norinder et al.18

along with some collected from various published sources by
us. All of these compounds were individually reconfirmed by
going back to the original literature. The Supporting Informa-
tion section offers more details.

Descriptors. There is a wide range of choices available for
describing molecules. Here we choose a small set of 1D
descriptors, namely, molecular weight (MW), number of hy-
drogen bond donors (Don), number of hydrogen bond acceptors
(Acc), number of rotatable bonds (Rot), 2κR, which is a measure
of the branching of the molecule, aromatic density (AR), and
log P. This 7-descriptor set which contains information about
the entire molecule is calculated with internally developed
programs. In particular, log P is calculated using our imple-
mentation of the Moriguchi method.23

We also use a 2D descriptor set based on the ISIS finger-
print. This set of descriptors contains information about the
specific set of functional groups within the molecule. The ISIS
fingerprint is a bit string (a string of 0’s and 1’s) of length 166
with a 1/0 indicating the presence/absence of some moiety or
“key”. There are 166 such keys for each compound. This choice
of descriptors is reasonably common in the diversity litera-
ture.24 In fact, Brown and Martin24 have recently shown that
the 166 ISIS keys perform remarkably well for clustering and
diversity analysis. This, of course, does not mean that ISIS

Table 1. A List of Molecules within These Activity Classes
Were Output from both the CMC and the MDDRa

activity classes used to define CNS-active molecules

cognition disorders, agent for”
“anxiolytic”
“antipsychotic”
“neuronal injury inhibitor/neuroleptic/neurotropic”
“antidepressant”
“analgesic, non-opioid”
“anticonvulsant”
“antimigraine”
“antiischemic, cerebral”
“analgesic, opioid”
“antiparkinsonian”
“sedative”
“hypnotic”
“stimulant, central”
“antagonist to narcotics”
“centrally acting agent”
“nootropic agent”
“neurologic agent”
“epileptic”

a These defined all the molecules with CNS activity.
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keys are useful for all classification problems. The 166 keys
for each molecule were written out using the ISIS software.
We also explore performance by combining the 166 keys with
the 7 calculated descriptors.

Our choice of representation precludes some important
characteristics of molecules, e.g., (1) conformational flexibility
and (2) stereoisomerism. Conformational preferences of a
molecule, in general, are very hard to capture uniquely in any
representation. Also, it is not clear that stereospecific informa-
tion is available for most of the compounds in the databases.
Other choices of descriptors are possible, and we are currently
working on refining and enhancing our collection of descriptors
(results will be reported elsewhere).

Training and Test Sets. We consider 20 complementary
train/test set pairs. Each training set consists of roughly 9 000
compounds with active and inactive compounds contributing
equally. The remaining compounds fell into the test set. Each
test set has roughly 13 000 actives and roughly 53 000 inac-
tives. All train/test set pairs are independently and randomly
created. Since roughly 4 500 compounds each are randomly
selected from about 17 000 actives and 57 000 inactives, the
probability of significant overlap between any two training sets
is low, so the models will not show any significant overlap due
to overlapping training sets.

Test Sets Based on Subclasses of Compounds. To
explore our results in detail we report the performance on
different subclasses of compounds. We will analyze the results
for 11 subclasses, namely (1) analgesics, (2) anticonvulsants,
(3) antidepressants, (4) antipsychotics, (5) anxiolytics, (6)
hypnotics, (7) compounds that contain both a tertiary amine
and an aromatic ring, (8) compounds with MW < 300, (9)
compounds with MW g 300, (9) compounds with log P < 4.0,
(10) compounds with log P g 4.0, and (11) compounds in the
MDDR CNS-active set with known animal test results.

The 11th subclass was created in the following manner. As
the MDDR database contains some information about the
status of human/animal tests done on some of the compounds,
it is possible to create a set of CNS-active compounds from
the MDDR that reflects detailed biological information. This
was done by creating a subset of the MDDR CNS-active list
based on the keywords in Table 2. This procedure generated
about 3 000 CNS-active compounds.

Table 1 (in Supporting Information) shows the compounds
we have collected from the literature with known CNS activity
information along with our predictions. As mentioned, this list
was originally culled from the work by Waterbeemd et al.19

and Fischer et al.20 We have, however, succeeded in indepen-
dently confirming the classification of over 95% of the com-
pounds in this table from the literature.

In any prediction method it is useful to obtain an idea about
true and false positives and negatives. True positives are

known CNS-active compounds that are predicted correctly, and
true negatives are known CNS-inactive compounds correctly
predicted to be inactives. False positives are CNS-inactives
that were wrongly classified as actives, and false negatives
are CNS-actives wrongly predicted to be inactives. Since the
CNS-active list is fairly well-defined, we can easily get a handle
on both true positives and false negatives. But, the CNS-
inactives are not based on knowledge about individual com-
pounds that belong to this class; i.e., some of the CNS-inactives
may actually cross the BBB and hit some targets in the brain.
It is, therefore, much harder to get precise values for false
positives and true negatives.

Bayesian Neural Network. We have previously described
our Bayesian learning procedure in detail.2 Neural networks
(NN) can be viewed as a flexible regression (classification)
technique. A Bayesian approach to NN modeling25,26 allows
for simultaneous and reliable optimization of a large number
of control parameters.

Within a Bayesian procedure a large number of models are
built. Associated with each model is a probability weighting
factor that is high if the classification error of that model is
low and vice versa. It is intuitively clear that most choices of
NN weights (models) will lead to low probability weightings.
It is therefore imperative that a reliable and robust method
be found for sampling in NN weight space. This is done in
analogy with accepted procedures in molecular dynamics and
Monte Carlo methods used in protein simulations. Technically
these are called Markov Chain Monte Carlo methods.27

Our Bayesian learning procedure enables us to determine
the significant descriptors in the model(s). This is done by
examining the hyperparameters associated with each weight
that connects the inputs in the network (see Ajay et al.2 for
details). Weights with small hyperparameters have small
contributions and vice versa, with one important exception:
If a descriptor has the same value (in our case 0 or 1) for all
the compounds in the training set, the value of the associated
hyperparameter is unreliable and should be eliminated from
consideration.

We also eliminate the descriptors with small (defined
precisely in Results) hyperparameter values for each of the
20 networks constructed. Note that the training set determines
the important descriptors. Therefore, not all descriptors will
necessarily be considered important by all networks. Next, the
descriptors that appear at least in 10 out of the 20 networks
are obtained and reported. This produces a “consensus set” of
important descriptors.

Results
Comparing the CNS-Active and -Inactive Dis-

tributions Based on the 7 Descriptors. Table 3
provides a comparison between CNS-active and -inac-
tive compounds in the database (CMC and MDDR)
based on the 7-descriptor set. As expected, CNS-active
compounds are somewhat smaller than other biologi-
cally active molecules: 90% of the CNS-active com-
pounds have anywhere from 2 to 7 hydrogen-bonding
groups while this range is from 2 to 9 for the inactives.
Over 90% of the CNS-active compounds have 7 or fewer
rotatable bonds, while this number is 10 for the inac-
tives. CNS-active compounds in general have somewhat
larger log P (more lipophilic) than other biologically
active molecules.

Predictions and Consensus Performance. Table
4 gives the main results for training/testing on com-
pounds from the MDDR and CMC. The best results
indicate that we can achieve around 80% predictivity.
There are some important themes in these results that
we should highlight:

1. The performance of the 7 1D descriptor set is quite
remarkable: 75% accuracy on actives and 65% on
inactives.

Table 2. Two Sets of Keywords Used To Narrow the List of
MDDR Active Compoundsa

action phrases for defining an active MDDR subset
healthy

rat
cat

mice
mouse
rodent
guinea
ferret
dog

monkey
primate
mg/kg

phase phrases for defining an active MDDR subset
preclinical

phase
launched

a The first set of phrases is used for searches in the “action”
field in the MDDR database and the second in the “phase” field.
These lists were then merged resulting in about 3 000 compounds.
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2. The performance of the ISIS keys is even better, a
5% improvement in accuracy for the actives and a 10%
improvement in accuracy on the inactives compared to
the 7-descriptor set.

3. The ISIS keys and the 7-descriptor set together
yield the best results: 81% predictive accuracy on the
actives and 78% on the inactives.

4. The accuracy on the inactive sets is lower by about
4% compared to the active sets. This could be due to
the much larger (and hence more diverse) number of
compounds in the inactive test sets. Another reason
could be that we have not assigned all the active
compounds correctly by the classification scheme in
Table 1 (see below).

The performance of the linear model is very close to
the best, though the addition of nonlinearities results

in a small (3%) improvement in predictability. Notice
the advantages of the Bayesian learning procedure from
these results. Despite increasing the number of param-
eters by almost an order of magnitude, the prediction
performance does not deteriorate; i.e., there is no
overlearning. In addition the predictive error in the
different test sets are not very different from one
another. As expected for any learning methodology, the
training set errors are lower than the test set errors by
about 8% (same for both actives and inactives).

We have run exploratory analysis on training sets
with 5 000, 8 000, and 13 000 compounds. The perfor-
mance of the networks with 8 000 and 13 000 com-
pounds lies roughly within the same error ranges as
shown in Table 4. The predictive accuracy goes down
by about 10% when using only a 5 000-compound
training set.

Predictions on Subclasses. In this section we
report on the predictions on the 11 subclasses of CNS-
active compounds based on BNN5 with all 174 descrip-
tors. Table 5 indicates that consensus predictions on
analgesics produce the largest errors and antipsychotics
the smallest. There are some important details that
should be kept in mind: (1) there is some overlap of
compounds between the classes, and (2) most of the
compounds in these subclasses are not part of the
training set, and hence the results in Table 5 are mostly
predictions. It is not clear why analgesics should be
harder to predict than the other subclasses. The error
in all the six subclasses of CNS-active compounds is at
or below the roughly 19% expected from the results in
Table 4.

1. Compounds with a Tertiary Nitrogen and an
Aromatic Ring. An interesting subclass to explore is
the one formed by all the molecules that have a tertiary
amine and an aromatic ring moiety in them, as An-
drews11 argues for the importance of this moiety for
CNS activity across different targets. Roughly 54% of
the CNS-active compounds in the CMC have a tertiary
amine and an aromatic ring moiety, while this number
is 57% for the CNS-active MDDR database. About 31%
of CNS-inactive compounds in the CMC and 36% of
MDDR have this moiety. Another reason to look for
predictivity on this subclass is due to the lack of any
single key that specifies a tertiary amine in the 166 ISIS
keys that we use.

Actives: Roughly 6-7% of compounds that are CNS-
active in this subclass are incorrectly classified as CNS-
inactive (see Table 6). So the false negative rate is quite
low and is very similar in both the CMC and the MDDR.
This implies that the true positive rate is high.

Inactives: The performance of the network on CNS-
inactive molecules with a tertiary nitrogen and an

Table 3. Differences between CNS-Active (CNS+) and
CNS-Inactive (CNS-) Compounds in Terms of the 7 1D
Descriptors

descriptor description value (CNS+/CNS-)

MW mean 354/387
median 351/385
90% range 200-540/198-577

2κR mean 7.4/8.3
median 7.3/7.9
90% range 3.4-12.2/3.4-15.9

log P mean 2.8/2.4
median 2.9/2.5
90% range 0.0-5.2/-1.0-5.4

donors % with zero 16/34
% with at least one 73/71
% with at least two 96/90
% with at least three 99/96

acceptors % with zero 5/2
% with at least one 19/8
% with at least two 43/22
% with at least three 65/41
% with at least four 81/60

rotors % with at least one 20/20
% with at least three 49/44
% with at least five 77/65
% with at least seven 90/79

AR % with zero 4/12
% with at least one 27/38
% with at least two 70/72
% with at least three 93/91

Don+Acep % with at least one 4/3
% with at least two 18/11
% with at least three 39/24
% with at least four 62/42
% with at least five 78/58
% with at least six 88/73
% with at least seven 94/82

Table 4. Range of Errors for All 20 Test Setsa

method % error on actives % error on inactives

BNN0;7des 28-31 37-40
BNN5;7des 25-28 34-38
BNN5;ISIS 19-22 22-25
BNN0;ISIS+7des 21-22 24-26
BNN5;ISIS+7des 17-20 21-23

a Notice that even though the training sets (of size roughly
9 000) were chosen completely randomly from the whole database
(of size roughly 70 000) the differences in the error rate are quite
minor. We have broken down the predictions into CNS-active and
-inactive sets as the number of compounds in the inactive set vastly
exceed the actives. The results are shown for a neural network
with 5 hidden units (BNN5) and with no hidden units (BNN0)
trained using a Bayesian procedure. There were roughly 13 000
compounds in each of the CNS-active test set, and roughly 53 000
in the CNS-inactive.

Table 5. Results of Consensus Predictions on 6 Subclasses of
the CNS-Active Compoundsa

subclass total % not CNS

analgesics 2592 19.0
anticonvulsants 1747 11.4
antidepressants 2896 7.5
antipsychotics 2905 5.6
anxiolytics 3593 10.0
hypnotics 447 13.2

a It is important to realize that the subclasses are not all
mutually exclusive. “Total” gives the total number of compounds
in both the CMC and MDDR.
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aromatic ring moiety is more interesting. To explore this
in detail we look at the CMC and MDDR subsets
separately.

False positive rate on CMC-inactives: There are
1 453 compounds in the CMC-inactives with a tertiary
amine and aromatic ring moiety. Out of these, 858
compounds are predicted to be CNS-active (i.e., a 59%
false positive rate). The question is, “are these really
failures?” 297 out of the 858 compounds have no
information in the activity class (and hence by default
they are classified as CNS-inactive). Removing them
from consideration and exploring the activity classes of
the remaining 561 compounds, we get about 168 com-
pounds that fall in the categories given in Table 7. These
classes should have been included in the list (Table 1)
that formed the definition of CNS-active compounds28

but were inadvertently excluded. Correcting for this
brings the false positive rate to 34% (assuming we
decline to make any predictions on the 297 compounds
with no defined activity class)sa reasonable figure
considering the overall prediction accuracy. A further
16% of the compounds left are antihistamines, a major-
ity of which may have CNS activity.28,29 In addition,
some of the compounds (e.g., chloramphenicol, phenoxy-
benzamine, ergonovine, etc.) that are left are known to
have some CNS activity,28,29 providing further proof that
not all compounds classified as active from the inactive
list are incorrect. So the false positive ratio is not as
bad as it appears at first sight.

True negative rate on CMC-inactives: There are
595 compounds that were classified as CNS-inactives
from among the 1453 compounds designated as CNS-
inactives. Only 15 of these compounds fall into any of
the classes in Table 7. Out of the 580 left, 477 had some

information in the “activity class” within the CMC
database, out of which only 13 were antihistamines.
None of these “activity classes” can be reasonably
classified as CNS-active. Therefore a majority of the
inactive predictions appear to be correct.

False positive and true negative rates on MDDR-
inactives: About 33% (roughly 6 200 out of 18 500
compounds) of the compounds designated as CNS-
inactive were classified as CNS-active. Out of these
6 200, 34 fall into classes in Table 7. There is some
indication for possible CNS penetration in the MDDR
database for another 99 compounds. About 5% of the
remaining compounds are antihistaminic. It is gratify-
ing that the false positive and true negative rates for
MDDR are not different from the ones found in the
CMC.

2. Subclasses Based on Molecular Weight. Ac-
tives: Among the CNS-active molecules with molecular
weight less than 300 the prediction accuracy is quite
high (see Table 6). It worsens somewhat for compounds
with molecular weight greater than 300 but is not bad
compared to the overall errors. Therefore reassuringly,
true positive rates are high while false negative rates
are low. However, it is clear that a larger percent of
heavier active compounds are predicted to be inactive.

False positive rate on CMC-inactives: Out of the
roughly 2 300 CMC molecules with MW < 300 desig-
nated as CNS-inactive, about 970 are classified as CNS-
active by the networks. This implies an apparent false
positive rate of 42%. Only 705 out of these 970 com-
pounds have some description in the activity field of the
CMC database. Roughly 125 out of these 705 compounds
fall into the categories given in Table 7, reducing the
false positive rate to roughly 25%. About 8% of the
remaining compounds are antihistamines. For com-
pounds with MW g 300, 638 compounds from the 2 415
CMC CNS-inactive designates were classified as CNS-
actives, with 423 having some activity information. This
implies an apparent false positive rate of 20%. Removing
compounds from Table 7, the false positive rate falls to
13%. Again roughly 8% of the remaining compounds are
antihistamines. Therefore, as was the case with the
aromatic ring-tertiary nitrogen pharmacophore, the
false positive rate is not unreasonably large. Notice that
the trend for false positive rate among compounds with
MW g 300 is smaller than for compounds with smaller
molecular weight.

True negative rate on CMC-inactives: Out of the
roughly 2 300 CMC inactive designates with MW < 300,
1 326 were classified as inactive, implying an apparent
58% true negative rate. 1 128 compounds has some
information about the activity class in the database, and
out of these only 25 compounds fall into any of the
classes in Table 7. For compounds with MW g 300,
there are 1 500 inactives with some information in the
activity class. 65 out of these 1 500 belong to the classes
in Table 7. Therefore, very few of the known actives are
being misclassified as inactives.

False positive and true negative rates on MDDR-
inactives: For MDDR inactive designates with MW <
300, the initial false positive rate appears to be a high
value of 38%. Only 10 molecules out of about 3 350
compounds predicted to be active fall into the categories

Table 6. Results of Consensus Predictions on 4 Subclasses of
Compounds Based on CNS-Actives (CNS+) and CNS-Inactives
(CNS-)a

subclass class total % incorrect

tertN+arom CNS+ 10197 6.5 (FN)
CNS- 20170 36.0 (FP)

MW < 300 CNS+ 5950 6.6 (FN)
CNS- 11108 39.0 (FP)

MW g 300 CNS+ 11885 11.2 (FN)
CNS- 46434 18.0 (FP)

log P < 4.0 CNS+ 15057 12.5 (FN)
CNS- 47711 22.2 (FP)

log P g 4.0 CNS+ 2778 14.1 (FN)
CNS- 9831 21.6 (FP)

MDDR subset CNS+ 2997 13.4 (FN)
a “Total” gives the total number of compounds in both the CMC

and MDDR, except for the MDDR subset. Here, FN stands for false
negative and FP for false positive.

Table 7. Therapeutic Classes Discovered by the Networks as
Belonging to CNS-Actives

new set of CNS-active classes

tranquilizer
antivertigo
anorexic
narcotic antagonist
serotonin antagonist
anti-anxiety
sleep
enhancer
sigma opioid antagonist
antiemetic
antinauseant
antispasmodic/anticholinergic
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in Table 7. There is some indication of CNS activity for
another 80 molecules. About 100 molecules are also
central 5-HT receptor agonists. Central 5-HT receptor
agonists should also have been included in the definition
of CNS-active classes but were again inadvertently
missed. Not much can be said about the rest of the
molecules. The false positive rate for MW g 300 is only
17%, so as seen for the false positive rate in the CMC-
inactives here too the false positive rate on heavier
molecules is lower than for lighter ones. The results for
true negatives also parallel the ones found for the CMC
above.

3. Subclasses Based on log P. As reported in Table
6, we again obtain high values for true positives and
low for false negatives. As observed earlier the tentative
values for false positives are high, but after some
corrections they become smaller. The situation with true
negative values is again similar to the results observed
above for the different subclasses.

428 compounds out of 1 130 CMC CNS-inactives with
log P g 4.0 were classified as CNS-active. Out of these
275 have some activity information available in the
CMC database. So tentatively about 28% of compounds
are false positives. Removing compounds in Table 7
reduces the false positive ratio to 21.5%. 15% of the
remaining false positives are antihistamines. This is a
higher false positive ratio than was observed before but
is within the average expected error.

1 179 out of 3 580, CMC CNS-inactives with log P <
4.0 were classified as CNS-active. Only 853 compounds
have some information in the activity class. So tenta-
tively about 26% of the compounds are false positives.
Again, removing compounds in Table 7 reduces the false
positive ratio to 21.2%. 6.2% of the remaining com-
pounds are antihistamines. So again, the number of
false positives is down to a reasonable number. A
cursory perusal of some of the remaining compounds
in consultation with the Drug Facts and Comparisons28

indicates that some of these do penetrate the CNS.
4. Active Compounds with MDDR Animal Data.

Out of the roughly 3 000 compounds in this subset of
MDDR active compounds the false negative rate is quite
small at 12%. About 30%of these false negative com-
pounds are neuronal injury inhibitors. This does not
mean that the networks have not learned the charac-
teristics of neuronal injury inhibitors (NII) as only 20%
of the NII’s in this subset are misclassified. As in all
the previous results the error in this subset is also small
and within the 20% overall error in Table 4.

Database of Compounds with Known CNS Ac-
tivity. We have collected from the literature a set of
275 compounds with known CNS activity. 139 of these
are active and 136 are inactive. We have achieved 93%
accuracy among the actives while this number is 72%
for the inactives. These results are roughly equivalent
to the overall results reported earlier. To our knowledge
this is the largest database on which any BBB models
have been tested. It also shows that the learning method
advocated in this paper is robust to the classification
noise. We have been able to collate experimentally
determined BB ) Cbrain/Cblood data on 80 compounds
(starred in the table in Supporting Information). 37 of
the 38 actives have been correctly predicted, while 30
of the 42 inactives were correctly predicted.

Another view of the results can be obtained by looking
at predictions along with confidence levels of each
predictions. Our confidence levels directly incorporate,
using Bayesian averaging, the predictions of all of the
20 models we have built. If we look at predictions over
a 50% confidence level, the performance of our models
improves substantially to around 88% for both actives
and inactives. At this level of confidence we miss out
on roughly 25% of the molecules in this database. More
details can be found in the Supporting Information. The
inactive prediction accuracy again rises to over 80% for
the 80 compounds with experimental BB data.

84 compounds in this database were not present in
our original training or test sets. 95% of the actives (38
out of 84 total) were predicted correctly, and 75% of the
inactives were predicted correctly. Incorporating confi-
dence levels again improves the predictive accuracy on
the inactives to over 85% and decreases it to 88% for
the actives.

The 7-Descriptor Set. The performance of a linear
network using just the 7 descriptors is surprisingly good,
especially considering the simplicity of the description.
This network correctly predicts about 70% of the actives
and roughly 60% of the inactives. As we have seen above
some of the compounds designated as CNS-inactive
actually should be CNS-active. This will improve the
correct classification rate on the inactives. We will study
these linear models in some detail as it is easier to build
intuition about the problem based on this descriptor set.

Using the distribution of the median value of the
hyperparameters we obtain, in general, the following
rank ordering of importance among the 7 descriptors:

This rank ordering is seen in almost all the 20 networks
trained on independent data.

All twenty networks give the same general results.
If the MW, κ, or number of rotatable bonds (Rot), or
number of hydrogen bond acceptors (Acep) is increased,
the compound will be less likely to be CNS-active. On
the other hand, if the aromatic density (AR), number
of hydrogen bond donors (Don), or log P is increased,
the compound is more likely to be CNS-active. This
result is compatible with accepted wisdom on the
characteristics of molecules that are CNS-active. There
are some important constraints on allowable values for
the descriptors. No predictions should be made for
molecules if MW is less than 60 or greater than 600, if
log P is less than -4.0 or greater than 11.0, if κ > 30,
or Don > 20, or Acep > 30, or Rot > 30, or AR > 20.

Relevant Descriptors. We have chosen to analyze
the linear models due to their simplicity and because
the performance of the linear models is comparable to
the best results. Any descriptor with a median hyper-
parameter value (after convergence of the network
dynamics; see Ajay et al.2 for details) less than or equal
to 0.1 was deemed irrelevant. This retained roughly 80
descriptors out of the original 173 in all 20 BNN0
models. The descriptors that appear at least 10 times
out of the 20 are shown in Table 2 (Supporting Informa-
tion). Among the 7-descriptor set all except log P appear
at least 10 times out of 20. Further, MW, Acep, κ, and
AR appear in all 20 networks, the remaining two,
namely Don and Rot, appear in 16.

Acep > AR ≈ Don ≈ κ > MW ≈ log P > Rot (1)
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These results are in keeping with previous studies
that have correlated molecular size (roughly correlating
with molecular weight, number of rotatable bonds, and
2κR) with transendothelial transport.30 The case for log
P is interesting. It appears that octanol-water partition
coefficient is useful for modeling CNS potency, but not
brain-blood concentration ratio.15 It is also likely that
log P is significant only for compounds that do not
undergo any facilitated transport into the brain (nicotine
serves as an example13 of a compound with low log P
that does cross the BBB quite well). Another reason for
the relative insignificance of log P could be due to the
largely unknown errors in its calculation. It is not clear
why Rot, the number of rotatable bonds which was the
least significant when regressing on the 7-descriptor set,
appears to be more significant than log P.

We would like to point out that the above procedure
only describes the common set of parameters deemed
to be important. For any given dataset some of these
parameters will not be considered as important while
others may get included. We have elected not to give
any equation for this descriptor set as the equations are,
in general, very different even in the sign of the
coefficients. This is not surprising as the contribution
of each descriptor (note that only the keys that are
present, i.e., have a value of 1, will contribute to the
equation) will be highly dependent on the dataset. A
little reflection will also indicate that even giving the
sign of the coefficients may not make much sense as
many of the keys are not independent of one another.

Do We Really Need To Add Nonlinearities? The
performance of the nonlinear networks is not signifi-
cantly different from the linear ones. Do we really need
to consider models with so many additional parameters?
The answer appears to be an unambiguous, yes.

As we have demonstrated in the drugs versus non-
drugs work,2 a Bayesian procedure is better at avoiding
local minima compared to most other methods. Despite
this, local minima are a problem and care must be taken
when making predictions. As an example of the impor-
tance of nonlinearities consider the following. One of the
training sets contains 289 compounds that has a four-
member ring (ISIS key 8). 15 of these are CNS-active
and the rest are inactive. One simple local minima trap
(for a linear network) could be to classify all compounds
that have a four-member ring to be CNS-inactive,
resulting in only a 5% error (well below the 20% error
in predictions). The results however are interesting and
given in Table 8. The linear network is able to generate
a slightly more complicated representation by correctly
assigning 20% of the active compounds and maintaining

a 100% accuracy on the inactives. The network with five
hidden units (BNN5) performs much better by correctly
assigning 94% of the active compounds correctly and
missing out on only 1 of the inactives. That the
improvement in training set results are not overlearning
(i.e., a new irrelevant local minima) due the presence
of a much larger number of parameters is evident from
the predictive performance in Table 8. The conclusion
is that even though the addition of nonlinearities only
affords a small overall improvement in predictive per-
formance it is very important in predicting “outliers”
correctly.

Designing a CNS-Active Virtual Library. Earlier
work in our group by Bemis and Murcko21 enumerated
the scaffolds found repeatedly in known drugs. This
work has been extended to identify side chains and also
frameworks containing information about side chain
substitution patterns (G. Bemis, unpublished). For
testing our ability to generate a CNS-active library
amenable to combinatorial chemistry we performed the
following study. The 100 most frequent scaffolds and
the 300 most frequent side chains were combined in a
random but chemically reasonable manner to produce
a set of approximately 1 million molecules. These
molecules were then REOS’ed30 to remove from consid-
eration the ones that had reactive functional groups and
other “undesirable” moieties, along with restrictions
based on molecular weight, log P etc. (see Methods 2).
It is reasonable to expect that molecules built using
scaffolds and side chains commonly found in drugs
provide a good starting point for generating “drug-like”
molecules. The script for generating and REOS’ing takes
about 10 molecules/s on an 195 MHz, SGI with an R10,-
000 processor. The script for predictions goes through
10 molecules/s on the same R10,000 processor. Roughly
25% of the molecules are classified as CNS-active and
about 7% of the molecules are predicted to be active with
very high degree of confidence.

Analysis of the compounds generated by this proce-
dure produced several classes of molecules that would
be amenable to combinatorial chemistry based library
generation. Figure 1 shows 40 simple aromatic carboxa-
mides from the high probability CNS-active set of
molecules that could be broken down in a retrosynthetic
manner into aromatic acids and amines. These compo-
nents could then be used in a forward sense to experi-
mentally generate a combinatorial chemistry library of
potentially CNS-active compounds.

The 40 molecules shown are composed of a set of 27
unique aromatic carboxylic acids and 7 unique amine
nucleophiles. Recombination of these components could
generate a library of 189 compounds that would be
available via relatively simple chemistry.

The combination of library generation and detailed
analysis of the structures produced could be used to
design libraries of many different sizes and different
chemical classesswe show this library only as an
example.

Conclusion

We have generated examples of CNS-actives and
-inactives based on therapeutic classes. We have shown
that it is possible to distinguish between these classes
of molecules (with about 80% predictive accuracy) on a

Table 8. Performance of the Linear and Nonlinear Networks
on a Subset of Compounds That Have a 4-Member Ringa

dataset class total % correct (BNN0) % correct (BNN5)

train set CNS+ 15 20 93.3
CNS- 274 100 99.6

test set CNS+ 6 16.7 66.7
(CMC) CNS- 145 100 100

test set CNS+ 48 45.8 79.1
(MDDR) CNS- 2698 99.7 99.3
a The improved results on adding nonlinearities is reflected on

both the training set and the test set. “Total” indicates the total
number of compounds in each subclass. All the results correspond
to using all 173 descriptors.
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wide range of structural classes. As noted earlier a
therapeutic class based classification scheme is error-
prone. We have shown that our modeling approach,
BNN, is capable of handling data with classification
noise. This was demonstrated by (1) examining the
consistency or otherwise of the equations built by the
models, (2) examining parameters in the models and
their consistency with “received wisdom” in the field,
(3) predicting on a subset of CNS-active compounds with

known animal data in the MDDR database, and (4)
constructing the largest published (to our knowledge)
database of CNS-active and CNS-inactive compounds
from the literature. The serendipitous identification of
“new” CNS-active therapeutic targets (Table 7) also
strengthens our belief in the validity of the models.
These findings also suggest that our models are “close
to” the models that can be built on corresponding
nonnoisy data.

Figure 1. Set of 40 structures selected from the set classified as CNS-active with a very high degree of confidence. We selected
the subset of aromatic carboxyamides because they can be broken down retrosynthetically into substituted aromatic acids and
amines. These constituents could be used to create a 27 × 7 combinatorial chemistry amenable library.
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As in our previous work2 we have shown that confi-
dence levels on predictions can be enhanced by model-
averaging,32 i.e., combining predictions from the 20
models built. It is likely that such model-averaging will
work better if the individual models use different
descriptor sets. We are currently working on enhancing
predictability using this and other related approaches.
There is some indication that our methodology correctly
predicts actively transported molecules (see, e.g., aman-
tadine, baclofen, diphenhydramine, fentanyl, and val-
proic acid, which is partly carrier-mediated, in Table 1
in Supporting Information). However, more work needs
to be done to study this question thoroughly.

A comment on novel methodology development for
dealing with classification noise data models is relevant
here. As is well-known, high-throughput screens for, say
biological activity, produce experimental results that
contains data with varying degrees of classification
noise. Methods need to be developed to handle these
kinds of errors while retaining predictability. We have
shown that our learning methodology is capable of
handling a limited amount of errors (details will be
reported elsewhere).

One of the striking results of our work is the remark-
able predictivity of the models built using the 7 1D
descriptors. It is possible to rationalize the utility of
hydrogen bond acceptor and donor counts in terms of
their relationship with solubility and permeability,
respectively. It is intuitively reasonable to expect log P
to be a relevant descriptor but further work is needed
to delineate its importance. Another important 1D
descriptor that merits study (not done in this work) is
the surface area (polar or total) of the molecule. The
relevance and importance of 2D topological descriptors
such as the ones used in this work also require more
analysis.

This study is a departure from standard QSAR-type
models built for the study of CNS activity in that we
use a therapeutic use-based classification. This ap-
proach is open to criticism, and for this reason we have
set-up and explored the performance of our models in a
lot of detail (see the Methods section). The assignment
of analgesics as CNS-active is another potential source
of misclassification. In an attempt to explore this issue,
we trained networks after completely eliminating all
analgesics from our database; i.e., they were not used
for either training or testing. Our results (not shown)
show that there is no effect on predictive performance
of the networks (BNN0/BNN5, 1D/2D descriptors) and
the weights in the BNN0 plus 1D models are very close
to the original model.

The major arena for application of the models devel-
oped in this work is in designing combinatorial libraries
that would show preferential CNS activity. We antici-
pate this to be an extremely useful method in constrain-
ing the size of combinatorial libraries. In general, this
filter will be most useful in conjunction with the drug/
nondrug filter reported by us in previous work.2 The
possibility of predicting CNS activity based on structural
and other easily calculatable information will help speed
the development of new CNS-active drugs.
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